If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35p^2-19p+2=0
a = 35; b = -19; c = +2;
Δ = b2-4ac
Δ = -192-4·35·2
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-9}{2*35}=\frac{10}{70} =1/7 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+9}{2*35}=\frac{28}{70} =2/5 $
| 38=x+75 | | +10(6-11x)=-54+12x | | 2x+x=154 | | 2(4x+3)=3x | | 5y-7+y+57=6y+50-2y | | x/−11=−12−(−6) | | 3=-2(2)+b | | -74=3(5b+5)+1 | | 9x-5=3x+2 | | 3(1-y)=2(1+5y) | | 3x+.58+.13=4x | | 2x+2(x+3)=62 | | x–5=-13 | | 3(1-y)=2(1+5y | | -2=1/5x-2=3 | | 7+7x=1+3 | | 9x-(6x-8)=29 | | 64+5x=-20x-11 | | 13n=-6 | | D=5/3(m-16) | | x2-7x=5 | | -7(3x+6)÷3=7 | | -9(x+9)+191=19+10 | | 36+3×=6x | | .15x+8+.1x+3=5 | | 5=-5x+4x | | x2-7x-11=0 | | 0.75x-3=17 | | 1/2x-10=-6 | | 4n+3n+24-10+6n=8 | | -11(x+6)+500=13+25 | | 34=-w/4 |